An Institutional Perspective of Semantic Web Stack

Dorel Lucanu
Joint work with Yuan Fang Li and Jin Song Dong from NUS
{dlucanu}@info.uaic.ro

Universitatea “Alexandru Ioan Cuza”, Iași
Outline

- institutions
- institution independent logic programming
- applications to SW
 - logic programming views on web ontologies
 - institutional meaning of RDF layer
 - institutional meaning of layering
- conclusion
The jungle of Semantic Web Languages

SWRL FOL

OWL Full

OWL

F-Logic

OWL Light

OWL Light

RDF Schema

OWL Full

Description Logic (DL)

Datalog

SWRL

OWL DL

DHL

OWL DL

DLP

OWL Flight

WRL

DAML-OIL

DERI, Innsbruck, Austria, 06.12.2005
Motivation

- an integrating mathematical structure for Semantic Web Languages (SWL)
- translating Web ontologies into other formalisms
- a safe way to walk in the jungle
- disputes on layering of SWL
- Open World Assumption (OWA) vs Closed World Assumption (CWA)
- soundness of the reasoners for Web ontologies
- finding the real meaning of Semantic Web Stack
Institutions

- formalize the notion of "a logic"
- study the properties of a logic
 - representation
 - implementation
- translation of logics
Institutions: ingredients

- **signatures**: formalize vocabularies

- **models**: structures interpreting the symbols (names) from a signature

- **sentences**: formulas built with symbols from signature expressing specific properties

- **satisfaction relation**: says when a given sentence holds in a given model (both correspond to the same signature)
The architecture of an institution
Institutions: signatures

Horn Logic: $\Sigma = (PtN, FtN, CtN)$
$PtN =$ predicate names, $FtN =$ function names, $CtN =$ constant names

Description Logic: $\Sigma = (CN, PN, IN)$
$CN =$ class names, $PN =$ property names, $IN =$ individual names
PtN, FtN, CtN are pairwise disjoint

OWL: $\Sigma = (CN, PN, IN)$
PtN, FtN, CtN are pairwise disjoint only for OWL DL and its dialects
Institutions: models

- **Horn Logic:** \(\Sigma\text{-model } \mathfrak{I} = (\mathcal{D}_\mathfrak{I}, _\mathfrak{I}) \)
 \[
 \rho_\mathfrak{I} \subseteq \mathcal{D}_\mathfrak{I}^{\text{arity}(p)}, \quad f_\mathfrak{I} : \mathcal{D}_\mathfrak{I}^{\text{arity}(f)} \rightarrow \mathcal{D}_\mathfrak{I}, \quad a_\mathfrak{I} \in \mathcal{D}_\mathfrak{I}
 \]

- **Description Logic:** \(\Sigma\text{-model } \mathfrak{I} = (\Delta_\mathfrak{I}, [[_]]_\mathfrak{I}) \)
 \(\Delta_\mathfrak{I} \) domain of the interpretation

 \[
 [[cn]]_\mathfrak{I} \subseteq \Delta_\mathfrak{I}, \quad [[pn]]_\mathfrak{I} \subseteq \Delta_\mathfrak{I} \times \Delta_\mathfrak{I}, \quad [[in]]_\mathfrak{I} \in \Delta_\mathfrak{I}
 \]

- **OWL:** \(\Sigma\text{-model } \Pi = (R_\Pi, S_\Pi, \text{ext}_\Pi) \)

 \[
 S_\Pi : CN \cup PN \cup IN \rightarrow R_\Pi
 \]
 \[
 \text{ext}_\Pi(cn) \subseteq R_\Pi, \quad \text{ext}_\Pi(pn) \subseteq R_\Pi \times R_\Pi
 \]
Institutions: sentences

- Horn Logic: Horn rules $p_1(u_1), \ldots, p_n(u_n) \rightarrow p_0(u_0)$

 # hasAuthor $(p, a) \land \text{citedBy} (p, q) \rightarrow \text{CitedAuthor} (a)$

- Description Logic:

 $C ::= \bot \mid \top \mid cn \mid C \cap C \mid C \cup C \mid \neg C$

 $\mid \forall pn.C \mid \exists pn.C \mid \leq n pn \mid \geq n pn$

 $F ::= C \sqsubseteq C \mid C \equiv C$

 $\mid pn^+ \sqsubseteq pn \mid pn \sqsubseteq pn' \mid pn \equiv pn'$

 $\mid o : C \mid (o, o') : pn$

Author \sqsubseteq Person

Book $\sqsubseteq (\geq 1 \text{hasAuthor})$ (each book has at least one author)
Institutions: sentences

OWL:
each book has at least one author

```
<owl:Class rdf:ID="Author">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasAuthor" />  
      <owl:minCardinality rdf:datatype="#&xsd;nonNegativeInteger">1
    </owl:minCardinality>
  </owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
```

Class(Author partial restriction(hasAuthor minCardinality(1)))
Institutions: satisfaction relation

relates the models and the sentences: \(M \models \Sigma \varphi \)
where \(M \) is \(\Sigma \)-model and \(\varphi \) is a \(\Sigma \)-sentence

it is the subject of the satisfaction condition which
expresses the invariance of truth under change of notation

\[
M' \models_{\Sigma'} \phi(\varphi) \iff M' \models_{\phi} \models_{\Sigma} \varphi
\]

where \(\phi : \Sigma \to \Sigma' \), \(M' \) is a \(\Sigma' \)-model, and \(\varphi \) is a \(\Sigma \)-sentence

DL:

\[
I \models_{\Sigma} A \subseteq \forall P.B \iff [A]_I \subseteq \{x \mid (\forall y)(x, y) \in [P]_I \Rightarrow y \in [B]_I\}
\]
Institutions: Specifications and Theories

- A specification is a pair \((\Sigma, F)\), where \(\Sigma\) is a signature and \(F\) is a set of sentences.

- Semantical consequences: \((\Sigma, F) \models \varphi\) iff
 \[(\forall M)(M \models_\Sigma F \Rightarrow M \models_\Sigma \varphi) \]

- A theory is a specification \((\Sigma, F)\) s.t.
 \[(\forall \varphi)((\Sigma, F) \models \varphi \Rightarrow \varphi \in F) \]

- The inclusion \(\text{Th} \rightarrow \text{Spec}\) is an equivalence of categories.

- Theoroidal (spec-oidal) institutions:
 - Signatures are theories (specifications).
 - A \((\Sigma, F)\)-sentence is a \(\Sigma\)-sentence.
 - \((\Sigma, F)\)-models are \(\Sigma\)-models satisfying \(F\).
 - \(M \models (\Sigma, F) \varphi\) iff \(M \models_\Sigma \varphi\).
Relating Institutions

- **morphism**: capture the way in which a “richer” institution is built over a “simpler” one

- **comorphism**: capture the way in which a “simpler” institution is embedded (encoded) into a “richer” one

 both are the subject of a corresponding satisfaction condition

- there exist a variety of definitions for morphisms and variety of definitions for comorphisms in literature

- a prover from the target logic can be used to prove properties from the source logic only if certain conditions are fulfilled
Closed World Assumption

If we cannot prove \((\Sigma, F) \models \varphi\), then we add \(\neg \varphi\) to \(F\) or, equivalently, restrict the class of \((\Sigma, F)\)-models to those satisfying \(\neg \varphi\).

The negation can be defined in an institution independent way:

\[
M \models_\Sigma \neg \varphi \iff M \not\models_\Sigma \varphi
\]

\(\Sigma\) *satisfies the closed world assumption (CWA)* iff for each specification \((\Sigma, F) \in \text{Spec},\)

\[
(\Sigma, F) \models \neg \varphi \iff (\Sigma, F) \not\models \varphi
\]
variables as signature morphisms
\((\forall x)p(x)\)
Institution independent quantifiers

variables as signature morphisms

$$(\forall x)p(x)$$

$x : \Sigma = (PtN, FtN, CtN) \rightarrow \Sigma' = (PtN, FtN, CtN \cup \{x\})$

$I \models_{\Sigma} (\forall x)p(x)$ iff

$$(\forall I' \Sigma'\text{model})I'|_x = I \Rightarrow I' \models_{\Sigma'} p(x)$$
variables as signature morphisms
\[(\forall x)p(x)\]
\[x : \Sigma = \{PtN, FtN, CtN\} \rightarrow \Sigma' = \{PtN, FtN, CtN \cup \{x\}\}\]
\[M_0 \models (\forall x)p(x) \iff (\forall M' \Sigma'\text{model})M'\models_x M \models \Sigma' \models (\forall x)p(x)\]

\[\Sigma \rightarrow \Sigma'\]
variables as signature morphisms

\((\forall \, x)\, p(x)\)

\(x : \Sigma = (PtN, FtN, CtN) \rightarrow \Sigma' = (PtN, FtN, CtN \cup \{x\})\)

\(L \models_{\Sigma} (\forall \, x)\, p(x) \iff (\forall \, I' \Sigma'\text{\ model})I'|_x = L \Rightarrow L' \models_{\Sigma'} p(x)\)

\(X : \Sigma \rightarrow \Sigma'\)

A \(\Sigma\)-sentence \((\forall \, X)\varphi'\) is the universal quantification of the \(\Sigma'\)-sentence \(\varphi'\) iff

\(M \models_{\Sigma} (\forall \, X)\varphi' \iff (\forall \, M' \text{ a } \Sigma'\text{-model})M'|_x = M \Rightarrow M' \models_{\Sigma'} \varphi'\)
Institution independent Horn Logic

$\chi : \Sigma \rightarrow \Sigma'$ is *representable* iff there is a Σ-model M_χ s.t.

1. any Σ-model M' is an expansion along X of a Σ-model M, i.e. $M = M'|_X$, and

2. there is a morphism $M_\chi \rightarrow M$

A set F of Σ-sentences is *basic* iff there is a Σ-model M_F s.t. $M \models_\Sigma F$ iff there is a homomorphism $M_F \rightarrow M$.

If $M_F \rightarrow M$ is unique, then F is *epic basic*.

A *Horn clause*: $(\forall X)F \rightarrow F'$ s.t. F is epic basic, F' is basic, and $X : \Sigma \rightarrow \Sigma'$ is representable. (Diaconescu, 2004)
Institution independent Horn Logic

DL

- $cn(in)$ is epic basic (cn class name, in individual name)
- $cn_1 \sqcup cn_2(in)$ is not basic
 \[
 \Delta_{I_1} = \{a\}, \; [[in]]_{I_1} = a, \; [[cn_1]]_{I_1} = \{a\}
 \]
 \[
 \Delta_{I_2} = \{b\}, \; [[in]]_{I_1} = b, \; [[cn_2]]_{I_2} = \{b\}
 \]
 I_1 and I_2 cannot be related via a homomorphism

- Lloyd-Topor transformations define a comorphism

 \[(\Phi, \beta, \alpha) : \text{ExtHL} \rightarrow \text{HL}^\wedge\]

 HL^\wedge is HL enriched s.t. any conjunction of rules is a sentence
Institution independent Logic Programming

OWA Logic Programming institution with base institution \mathcal{S}, $\mathcal{LP}(\mathcal{S})$, is defined as follows:

1. the signatures are Horn specifications HSpec;
2. the model functor is $\text{Mod}(\mathcal{S})$ extended to Horn specifications;
3. the Σ-sentences are *Horn queries* $(\exists X)\varphi$ with φ basic;
4. the satisfaction is given by $M \models_{(\Sigma,F)} (\exists X)\varphi$ iff $M \models_{\Sigma} (\exists X)\varphi$, i.e., the satisfaction is inherited from the base institution.
CWA Logic Programming institution with base institution \(\mathcal{S} \), \(\mathcal{LP}^\Delta(\mathcal{S}) \), is defined similarly to \(\mathcal{LP}(\mathcal{S}) \) except the model functor which associates a category of logically equivalent canonical models \(\Delta(\Sigma, F) \) with each Horn specification \((\Sigma, F) \).

Herbrand Theorem (Diaconescu, 2004). In an arbitrary institution consider a specification \((\Sigma, F) \) which has an initial model \(0_{\Sigma,F} \). Then for each query \((\exists X)\varphi \)

\[
(\Sigma, F) \models (\exists X)\varphi \text{ iff } 0_{\Sigma,F} \models (\exists X)\varphi
\]
Institution independent Logic Programming

The institution of a Logic Programming with Knowledge Bases, $\mathcal{LP}^{kb}(\mathcal{S})$, is defined as follows:

1. a signature is a pair $((\Sigma, F), KB)$, where (Σ, F) is a Horn specification (the logic program), and KB is a (Σ, F)-knowledge base (Grothendieck construction);

2. the model functor maps each signature $((\Sigma, F), KB)$ into a category $\Delta(\Sigma_{KB}, F \cup F_{KB})$;

3. the sentences are Horn queries;

4. the satisfaction is given by $\Delta(\Sigma, F, KB) \models_{(\Sigma,F)} (\exists X) \varphi$ iff $\Delta(\Sigma, F, KB) \models_{\Sigma} (\exists X) \varphi$.
Logic Programming Views

- OWLDLP is OWA LP over OWLDesLog
- OWLDLP is CWA LP over OWLDesLog
- OWLDLP\(^{kb}\) is LP with KB over OWLDesLog

- DLP is OWA LP over DHL
- DLP is CWA LP over DHL
- DLP\(^{kb}\) is LP with KB over DHL

- DATAHLP is OWA LP over DATAHORN
- DATAHLP is CWA LP over DATAHORN
- DATALOG is LP with KB over DATAHORN
Adding rules to Web Ontology Languages . . .

\[\mathcal{LP}^{kb}(\text{OWLDesLog}_-^-) \xrightarrow{\text{CO}} \mathcal{LP}^{kb}(\text{DHL}) \xrightarrow{\text{CO}} \text{DATAHLP}^{kb} \]

\[\mathcal{LP}^\Delta(\text{OWLDesLog}_-^-) \xrightarrow{\text{CO}} \mathcal{LP}^\Delta(\text{DHL}) \xrightarrow{\text{CO}} \text{DATAHLP}^{\Delta} \]

\[\mathcal{LP}(\text{OWLDesLog}_-^-) \xrightarrow{\text{CO}} \mathcal{LP}(\text{DHL}) \xrightarrow{\text{CO}} \text{DATAHLP} \]

\[\mathcal{HL}(\text{OWLDesLog}_-^-) \xrightarrow{} \mathcal{HL}(\text{DHL}) \xrightarrow{} \text{DATAHORN}^{\wedge} \]
RDF Serialization

From Semantic Web talk by Tim Berners-Lee at XML 2000
Bare RDF logic

- signatures: RR a set of resources references
- models: $\models = (R_\models, P_\models, S_\models, \text{ext}_\models)$, where R_\models is a set of resources, $P_\models \subseteq R_\models$ - the set of properties, $S_\models : RR \rightarrow R_\models$
 $\text{ext}_\models : P_\models \rightarrow \mathcal{P}(R_\models \times R_\models)$ is an extension function mapping each property to a set of pairs of resources that it relates
- RR-sentences are triples of the form (sn, pn, on), where $sn, pn, on \in RR$
- satisfaction is defined as follows:

$$\models \models_{RR} (sn, pn, on) \iff (S_\models(sn), S_\models(on)) \in \text{ext}_\models(\text{ext}_\models(pn)),$$
RDF theory \(\text{RDF} = (\text{RDFVoc}, \mathcal{T}_{\text{RDF}}) \)

\text{RDFVoc} includes the following items:

- \text{rdf:type}, \text{rdf:Property}, \text{rdf:value},
- \text{rdf:Statement}, \text{rdf:subject}, \text{rdf:predicate}, \text{rdf:object},
- \text{rdf:List}, \text{rdf:first}, \text{rdf:rest}, \text{rdf:nil},
- \text{rdf:Seq}, \text{rdf:Bag}, \text{rdf:Alt}, \text{rdf:li} \text{ rdf:_1 rdf:_2} ...

and \(\mathcal{T}_{\text{RDF}} \) is

\[
\{ \\
(rdf:type, rdf:type, rdf:Property), \\
(rdf:subject, rdf:type, rdf:Property), \\
(rdf:predicate, rdf:type, rdf:Property), \\
(rdf:object, rdf:type, rdf:Property), \\
(rdf:value, rdf:type, rdf:Property), \\
(rdf:first, rdf:type, rdf:Property), \\
(rdf:rest rdf:type rdf:Property), \\
(rdf:nil rdf:type rdf:List), \\
(rdf:_1 rdf:type rdf:Property), \\
(rdf:_2 rdf:type rdf:Property), \\
\ldots
\}
\]
RDF theory $\text{RDF} = (\text{RDFVoc}, T_{\text{RDF}})$

```xml
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    ...>
```

The prefix rdf: is used for the namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

We suppose that there is given a set R_{RDF} of RDF resources and a function $S_{\text{RDF}} : \text{RDFVoc} \rightarrow R_{\text{RDF}}$ which associates a resource with each RDF symbol. It is easy to see that R_{RDF} and S_{RDF} can be extended to a RDF-model RDF.
signatures: theory morphisms \(f : \text{RDF} \rightarrow (RR, T) \)

models: \((RR, T)\)-models \(\mathcal{I} \) such that

1. \(R_\mathcal{I} \) includes \(R_{\text{RDF}} \) and the restriction of \(S_\mathcal{I} \) to \(\text{RDFVoc} \) coincides with \(S_{\text{RDF}} \),
2. if \(p \in P_\mathcal{I} \) then \((p, \text{rdf}: \text{Property}) \in \text{ext}_\mathcal{I}(\text{rdf}: \text{type}) \)

\(f \)-sentences are \(RR \)-sentences

satisfaction: \(\mathcal{I} \models_f (sn, pn, on) \text{ iff } \mathcal{I} \models_{RR} (sn, pn, on) \)
RDF Schema theory $\text{RDFS} = (\text{RDFS Voc}, \ T_{\text{RDFS Voc}})$

RDFS Voc is RDF Voc together with

- `rdfs:domain`, `rdfs:range`, `rdfs:Resource`,
- `rdfs: Literal`, `rdfs: Datatype`,
- `rdfs:Class`, `rdfs:subClassOf`,
- `rdfs:subPropertyOf`,
- `rdfs:member`, `rdfs:Container`, `rdfs:ContainerMembershipProperty`

and the sentences $\ T_{\text{RDFS}}$

\[
\begin{align*}
\{ & \text{rdf:type}, \text{rdfs:domain}, \text{rdfs:Resource}, \\
& \text{rdfs:domain}, \text{rdfs:domain}, \text{rdf:Property}, \\
& \text{rdfs:range}, \text{rdfs:domain}, \text{rdf:Property}, \\
& \text{rdfs:subPropertyOf}, \text{rdfs:domain}, \text{rdf:Property}, \\
& \text{rdfs:subClassOf}, \text{rdfs:domain}, \text{rdf:Class}, \\
& \text{rdf:subject}, \text{rdfs:domain}, \text{rdf:Statement}, \\
& \ldots
\end{align*}
\]
RDF Schema theory $\text{RDFS} = (\text{RDFSVoc}, T_{\text{RDFSVoc}})$

```
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
...

We suppose that there is given a set $R_{\text{RDFS}}$ of RDF Schema resources and a function $S_{\text{RDFS}} : \text{RDFSVoc} \rightarrow R_{\text{RDFS}}$ which associates a resource with each RDF Schema symbol and that satisfies $S_{\text{RDFS}}|_{\text{RDFSVoc}} = S_{\text{RDF}}$.
RDF Schema logic \( \text{RDFS} \)

- **signatures:** theory morphisms \( f : \text{RDFS} \to (RR, T) \)
- **models:** \( (RR, T) \)-models \( \mathcal{I} \) such that
  - \( R_\mathcal{I} \) includes \( R_{\text{RDFS}} \) and the restriction of \( S_\mathcal{I} \) to \( \text{RDFSVoc} \) coincides with \( S_{\text{RDFS}} \)
  - \( \text{ext}_\mathcal{I}(\text{rdfs:Resource}) = R_\mathcal{I} \)
  - \( (\forall x, y, u, v \in R_\mathcal{I})(x, y) \in \text{ext}_\mathcal{I}(\text{rdfs:domain}) \land (u, v) \in \text{ext}_\mathcal{I}(x) \Rightarrow u \in \text{ext}_\mathcal{I}(y) \)
  - \( (\forall x, y, u, v \in R_\mathcal{I})(x, y) \in \text{ext}_\mathcal{I}(\text{rdfs:range}) \land (u, v) \in \text{ext}_\mathcal{I}(x) \Rightarrow v \in \text{ext}_\mathcal{I}(y) \)
  - \( (\forall x, y \in R_\mathcal{I})(x, y) \in \text{ext}_\mathcal{I}(\text{rdfs:subClassOf}) \Rightarrow \text{ext}_\mathcal{I}(x) \subseteq \text{ext}_\mathcal{I}(y) \)
  - \( (\forall x \in \text{ext}_\mathcal{I}(\text{rdf:Class}))(x, \text{rdfs:Resource}) \in \text{ext}_\mathcal{I}(\text{rdfs:subClassOf}) \)
  - \( (\forall x, y \in R_\mathcal{I})(x, y) \in \text{ext}_\mathcal{I}(\text{rdfs:subPropertyOf}) \Rightarrow \text{ext}_\mathcal{I}(x) \subseteq \text{ext}_\mathcal{I}(y) \)
  - \( (\forall x \in \text{ext}_\mathcal{I}(\text{rdfs:ContainerMembershipProperty})) \\
    (x, \text{rdfs:member}) \in \text{ext}_\mathcal{I}(\text{rdfs:subPropertyOf}) \)
- \( f \)-sentences are \( RR \)-sentences
- **satisfaction:** \( \mathcal{I} \models_f (sn, pn, on) \iff \mathcal{I} \models_{RR} (sn, pn, on) \)
RDF and Web Ontology Vocabulary layers

Web Ontology Vocabulary layer

RDF layer
OWL DL theory

\[
\text{OWDL} = (\text{OWDLVoc}, T_{\text{OWDL}}), \text{ where } \text{OWDLVoc} \text{ is } \text{OWLVoc} \text{ together with }
\]

- owl:DeprecatedClass, owl:DisjointClasses, owl:SubClassOf,
- owl:Functional, owl:InverseFunctional, owl:Transitive,
- owl:SameIndividual, DifferentIndividuals, owl:someValues,
- owl:Thing, owl:Nothing,
- owl:intersectionOf, owl:unionOf, owl:complementOf, owl:oneOf,
- owl:someValues, owl:hasValue, owl:maxCardinality

and \( T_{\text{OWDL}} \) is

\[
\{
\text{(owl:intersectionOf, rdf:type, rdf:Property),}
\text{(owl:intersectionOf, rdfs:domain, owl:Class),}
\text{(owl:intersectionOf, rdfs:range, rdf:List),}
\text{(owl:equivalentClass, rdf:type, rdf:Property),}
\text{(owl:equivalentClass, rdfs:subPropertyOf, rdfs:subClassOf),}
\text{(owl:equivalentClass, rdfs:domain, owl:Class),}
\text{(owl:equivalentClass, rdfs:range, owl:Class),}
\text{(owl:disjointWith, rdf:type, rdf:Property),}
\text{(owl:disjointWith, rdfs:domain, owl:Class),}
\text{(owl:disjointWith, rdfs:range, owl:Class),}
\ldots
\}
\]
RDF Serialization of OWL DL: \textbf{owldl}

- signatures: theory morphisms \( f : \text{owldl} \rightarrow (RR,T) \)

- models: \((RR,T)\)-models \( \mathcal{I} \) such that
  - \( R_\mathcal{I} \) includes \( R_{\text{owldl}} \) and the restriction of \( S_\mathcal{I} \) to \( \text{owldlVoc} \) coincides with \( S_{\text{owldl}} \).

- Restrictions expressing the intended meaning of the new features.

- \( f \)-sentences are \( RR \)-sentences

- satisfaction: \( \mathcal{I} \models_f (sn, pn, on) \) iff \( \mathcal{I} \models_{RR} (sn, pn, on) \)
The meaning of layering
Institutions: Main references

- Introducing Institutions, by J. Goguen and R. Burstall, 1984
- Institutions: Abstract model theory for specification and programming, by J. Goguen and R. Burstall, 1992
- Structuring theories on consequence, by J. Fiadeiro and A. Sernadas - 1988
- May I Borrow Your Logic?, by M. Cerioli and J. Meseguer, 1993
- Moving Between Logical Systems, Andrzej Tarlecki, 1995
- Institution Morphisms, by J. Goguen and Gr. Rosu, 2002
- Grothendieck Institutions, by R. Diaconescu, 2002
- Herbrand Theorem, by R. Diaconescu, 2004
Institutions offer

- A rigorous and systematic approach of the logics underlying SW languages
- An important step towards structuring and re-using ontology parts
- A solid framework for relating SW languages with other formalisms and for proving the soundness of the reasoners
Questions?

Thank you!