Institution-independent logic programming paradigms

Dorel Lucanu
dlucanu@info.uaic.ro

Universitatea “Alexandru Ioan Cuza”, Iași

Joint work with Yuan Fang Li and Jin Song Dong from NUS
and Traian Șerbănuță from UIUC
In memory of Joseph …
Motivation: the jungle of SW Languages

- SWRL FOL
- OWL Full
- OWL
- F-Logic
- OWL Light
- RDF
- SHIQ
- OWL Full
- SHIQ
- DAML-OIL
- WRL
- DAML-OIL
- Datalog
- SWRL
- OWL Light
- OWL DL
- RDF Schema
- SHOIN
- OWL DL
- DLP
- OWL Flight
Motivation

- an integrating mathematical structure for Semantic Web Languages (SWL)
- translating Web ontologies into other formalisms
- a safe way to walk in the jungle
- disputes on layering of SWL
- Open World Assumption (OWA) vs Closed World Assumption (CWA)
- soundness of the reasoners for Web ontologies
- finding the real meaning of Semantic Web Stack
Outline

- institution independent logic programming paradigms
 - institutions
 - institution independent first order logic
 - institution independent logic programming paradigms
 - open world assumption (OWA)
 - closed world assumption (CWA)
- logic programming viewpoints on web ontologies
 - institution of description logic
 - description logic and logic programming paradigms
- an institutional approach of SW stack
 - institutional meaning of RDF layer
 - institutional meaning of ontology layer
 - institutional meaning of layering
- conclusion
Outline

- institution independent logic programming paradigms
 - institutions
- institution independent first order logic
- institution independent logic programming paradigms
 - open world assumption (OWA)
 - closed world assumption (CWA)
- logic programming viewpoints on web ontologies
 - institution of description logic
 - description logic and logic programming paradigms
- an institutional approach of SW stack
 - institutional meaning of RDF layer
 - institutional meaning of ontology layer
 - institutional meaning of layering
- conclusion
Institutions

J. Goguen, R. Burstal. 1984

- formalize the notion of "a logic"
- study the properties of a logic
 - representation
- implementation
- translation of logics
Institutions: ingredients

Informally an institution consists of

- a collection of **signatures**: vocabularies
- a collection of **models**: structures interpreting the symbols (names) from a signature
- a collection of **sentences**: formulas built with symbols from a signature expressing specific properties
- a **satisfaction relation**: says when a given sentence holds in a given model (both corresponding to the same signature)

Formally, \(\mathcal{S} = (\text{Sign}, \text{Mod}, \text{sen}, \models) \), where

- \(\text{Sign} \) is the category of signatures,
- \(\text{Mod} : \text{Sign}^{op} \to \text{Cat} \)
- \(\text{sen} : \text{Sign} \to \text{Set} \)
- \(\models = (\models_\Sigma \mid \Sigma \in \text{Sign}) \), \(\models_\Sigma \subseteq \text{Mod}(\Sigma) \times \text{sen}(\Sigma) \)
Institution of first order logic (FOL): signatures

$$\Sigma = (OP, RL)$$

OP - operation symbols

RL - relation (predicate) symbols

<table>
<thead>
<tr>
<th>NAT</th>
<th>LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_{NAT} = (OP_{NAT}, RL_{NAT})$</td>
<td>$\Sigma_{LIST} = (OP_{LIST}, RL_{LIST})$</td>
</tr>
<tr>
<td>$OP_{NAT} = {\text{zero, } s}$</td>
<td>$OP_{LIST} = {\text{nil, } a, b, \text{cons}}$</td>
</tr>
<tr>
<td>$RL_{NAT} = {\text{plus}}$</td>
<td>$RL_{LIST} = {\text{cat}}$</td>
</tr>
</tbody>
</table>

$\phi := \Sigma_{NAT} \rightarrow \Sigma_{LIST} = (\phi^\text{op} : OP_{NAT} \rightarrow OP_{LIST}, \phi^\text{rl} : RL_{NAT} \rightarrow RL_{LIST})$

- $\phi^\text{op}(\text{zero}) = \text{nil}$
- $\phi^\text{op}(s(x)) = \text{cons}(a, \phi^\text{op}(x))$
- $\phi^\text{rl}(\text{plus}(x, y, z)) = \text{cat}(\phi^\text{op}(x), \phi^\text{op}(y), \phi^\text{op}(z))$
FOL: models

<table>
<thead>
<tr>
<th>NAT</th>
<th>LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = \omega$</td>
<td>$M' = {a, b}^*$</td>
</tr>
<tr>
<td>$M_{zero} = 0$</td>
<td>$M'_\text{nil} = \varepsilon$</td>
</tr>
<tr>
<td>$M_s(n) = n + 1$</td>
<td>$M_{\text{cons}}(x, w) = xw$</td>
</tr>
<tr>
<td>$M_{\text{plus}}(n', n', n'') \equiv n'' = n + n'$</td>
<td>$M'_{\text{cat}}(w, w', w'') \equiv w'' = ww'$</td>
</tr>
</tbody>
</table>

$\phi := \Sigma_{\text{NAT}} \rightarrow \Sigma_{\text{LIST}}$

$\text{Mod}(\phi) : \text{Mod(\text{LIST})} \rightarrow \text{Mod(\text{NAT})}$

$\text{Mod}(\phi)(M') = M'\upharpoonright_\phi$ (by notation)

- $M'\upharpoonright_\phi = M'$ (as carrier sets)
- $(M'\upharpoonright_\phi)_{\text{zero}} = \varepsilon$
- $(M'\upharpoonright_\phi)_s(w) = aw$
- $(M'\upharpoonright_\phi)_{\text{plus}}(w, w', w'') \equiv w'' = ww'$
\(F_{\text{NAT}} \)

\[
(\forall n)\text{plus}(0, n, n) \\
(\forall n, n', n'') \text{plus}(n, n', n'') \rightarrow \text{plus}(s(n), n', s(n''))
\]

\(F_{\text{LIST}} \)

\[
(\forall w) \text{cat}(\text{nil}, w, w) \\
(\forall x, w, w', w'') \text{cat}(w, w', w'') \rightarrow \text{cat}(\text{cons}(x, w), w', \text{cons}(x, w''))
\]

\(\phi \) is extended to sentences

\[
\text{sen}(\phi) : \text{sen}(\Sigma_{\text{NAT}}) \rightarrow \text{sen}(\Sigma_{\text{LIST}})
\]

e.g., \(\text{sen}(\phi)((\forall n)\text{plus}(0, n, n)) = (\forall w)\text{cat}(\text{nil}, w, w) \)
FOL: satisfaction relation

\[M \models \sum_{\text{nat}} (\forall \ n) \text{plus}(0, \ n, \ n) \]
\[M \models \sum_{\text{nat}} (\forall \ n, \ n', \ n'') \text{plus}(n, \ n', \ n'') \rightarrow \text{plus}(s(n), \ n', \ s(n'')) \]
\[M' \models \sum_{\text{list}} (\forall \ w) \text{cat}(\text{nil}, \ w, \ w) \]
\[M' \models \sum_{\text{list}} (\forall \ x, \ w, \ w', \ w'') \text{cat}(w, \ w', \ w'') \rightarrow \text{cat}(\text{cons}(x, \ w), \ w', \ \text{cons}(x, \ w'')) \]

It is the subject of the **satisfaction condition** which expresses the invariance of truth under change of notation.

\[M' \models \sum_{\text{list}} (\forall \ w) \text{cat}(\text{nil}, \ w, \ w) \text{iff} \ M' \upharpoonright \phi \models \sum_{\text{nat}} (\forall \ n) \text{plus}(0, \ n, \ n) \]

Notation \(\widehat{\text{FOLR}}\) is similar to \(\widehat{\text{FOL}}\) excepting OP(\(\Sigma\)) that includes only constants and relations for each \(\Sigma\), and \(\widehat{\text{HL}}\) is the institution of **Horn Logic**.
Institutions: Specifications and Theories

- A **specification** is a pair \((\Sigma, F)\), where \(\Sigma\) is a signature and \(F\) is a set of sentences.

e.g., \(NAT = (\Sigma_{NAT}, F_{NAT})\), \(LIST = (\Sigma_{LIST}, F_{LIST})\)

- Semantical consequences: \((\Sigma, F) \models \varphi\) iff
 \[(\forall M)(M \models_\Sigma F \Rightarrow M \models_\Sigma \varphi)\]

- A **theory** is a specification \((\Sigma, F)\) s.t.
 \[(\forall \varphi)(\Sigma, F) \models \varphi \Rightarrow \varphi \in F\]

- The inclusion \(\text{Th} \rightarrow \text{Spec}\) is an equivalence of categories

- Theoroidal (spec-oidal) institutions \(\mathfrak{S}^{th}\):
 - Signatures are theories (specifications) \((\Sigma, F)\)
 - A \((\Sigma, F)\)-sentence is a \(\Sigma\)-sentence
 - \((\Sigma, F)\)-models are \(\Sigma\)-models satisfying \(F\)
 - \(M \models_{(\Sigma, F)} \varphi\) iff \(M \models_\Sigma \varphi\)
Relating Institutions

morphism: capture the way in which a “richer” institution is built over a “simpler” one

e.g., \((\Phi, \beta, \alpha) : \widehat{\text{FOL}} \rightarrow \widehat{\text{FOLR}}\)

\(\Phi : \text{Sign}(\widehat{\text{FOL}}) \rightarrow \text{Sign}(\widehat{\text{FOLR}})\) forgets non-constant operations

\(\beta = (\beta_\Sigma : \text{Mod}(\widehat{\text{FOL}})(\Sigma) \rightarrow \text{Mod}(\widehat{\text{FOLR}})(\Phi(\Sigma)) \mid \Sigma \in |\Sigma(\widehat{\text{FOL}})|),\)

\(\beta_\Sigma(M) = M\upharpoonright_{\Phi(\Sigma)}\)

\(\alpha = (\alpha_\Sigma : \text{sen}(\widehat{\text{FOLR}})(\Phi(\Sigma)) \leftrightarrow \text{sen}(\widehat{\text{FOL}})(\Sigma) \mid \Sigma \in |\Sigma(\widehat{\text{FOL}})|)\)

we also have a morphism \(\widehat{\text{FOL}} \rightarrow \widehat{\text{HL}}\)
Relating Institutions

comorphism: capture the way in which a “simpler” institution is embedded (encoded) into a “richer” one.

\[\Phi, \beta, \alpha : \widehat{DL} \rightarrow \widehat{FOL} \]

\[\Phi : \text{Sign}(\widehat{DL}) \rightarrow \text{Sign}(\widehat{FOL}) \] encodes a DL signature into a FOL signature

\[\beta = (\beta_\Sigma : \text{Mod}(\widehat{FOL})(\Phi(\Sigma)) \rightarrow \text{Mod}(\widehat{DL})(\Sigma) \mid \Sigma \in \Sigma(\widehat{DL})) \]

\[\alpha = (\alpha_\Sigma : \text{sen}(\widehat{DL})(\Sigma) \rightarrow \text{sen}(\widehat{FOL})(\Phi(\Sigma)) \mid \Sigma \in \Sigma(\widehat{FOL})) \]

- both are the subject of a corresponding satisfaction condition

- there exist a variety of definitions for morphisms and a variety of definitions for comorphisms in literature

^\[a^] is the institution of description logic
Outline

- institution independent logic programming paradigms
 - institutions
 - institution independent first order logic
 - institution independent logic programming paradigms
 - open world assumption (OWA)
 - closed world assumption (CWA)

- logic programming viewpoints on web ontologies
 - institution of description logic
 - description logic and logic programming paradigms

- an institutional approach of SW stack
 - institutional meaning of RDF layer
 - institutional meaning of ontology layer
 - institutional meaning of layering

- conclusion
A sentence $\neg \phi$ is the **negation** of the Σ-sentence ϕ iff
\[(\forall M) M \models_{\Sigma} \neg \phi \iff M \not\models_{\Sigma} \phi\]

A sentence $\phi_1 \land \phi_2$ is the **conjunction** of the Σ-sentences ϕ_1 and ϕ_2 iff
\[(\forall M) M \models_{\Sigma} \phi_1 \land \phi_2 \iff (M \models_{\Sigma} \phi_1 \land M \models_{\Sigma} \phi_2)\]

Σ has **negation/conjunction** iff there is $\phi' \in \text{sen}(\Sigma)$ semantically equivalent to $\neg \phi/(\phi_1 \land \phi_2)$ for each $\phi \in \text{sen}(\Sigma)/\phi_1, \phi_2 \in \text{sen}(\Sigma)$, respectively.

The other logical connectives like disjunction, implication, equivalence are defined as usually.
Institution independent quantifiers

A. Tarlecki 1986, R. Diaconescu 2004

variables as signature morphisms

\((\forall x_1, x_2) p(x_1, x_2)\)

\(X = \{x_1, x_2\}, \Sigma(X) = \Sigma \cup X\), where the variables \(X\) are seen as constants

\(X\) can be seen as a signature morphism \(X : \Sigma \rightarrow \Sigma(X)\) and \(p(x_1, x_2)\) as a \(\Sigma(X)\)-sentence.
variables as signature morphisms

\[(\forall x_1, x_2)p(x_1, x_2)\]

\[X = \{x_1, x_2\}, \Sigma(X) = \Sigma \cup X, \text{ where the variables } X \text{ are seen as constants}\]

\[X \text{ can be seen as a signature morphism } X : \Sigma \rightarrow \Sigma(X) \text{ and } p(x_1, x_2) \text{ as a } \Sigma(X) \text{-sentence.}\]

An \(X\)-expansion of a \(\Sigma\)-model \(M\) is a \(\Sigma(X)\)-model \(M'\) s. t. \(M' \upharpoonright_X = M\).

\(M\) satisfies \((\forall x_1, x_2)p(x_1, x_2)\) iff any of its \(X\)-expansions \(M'\) satisfies \(p(x_1, x_2)\).
Institution independent quantifiers

The abstract notion of FOL variable is captured by a representable signature morphism $\chi : \Sigma \rightarrow \Sigma'$.
The abstract notion of FOL variable is captured by a representable signature morphism \(\chi : \Sigma \to \Sigma' \)

A \(\Sigma \)-sentence \((\forall X)\varphi'\) is the universal quantification of the \(\Sigma' \)-sentence \(\varphi' \) iff

\[
M \models_\Sigma (\forall X)\varphi' \iff (\forall M' \text{ a } \Sigma'\text{-model}) M' \upharpoonright X = M \Rightarrow M' \models_{\Sigma'} \varphi'
\]
Institution independent atomic formulas

A set F of Σ-sentences is **basic** iff there is a Σ-model M_F s.t. $M \models \Sigma F$ iff there is a homomorphism $M_F \rightarrow M$.

e.g., $(\exists x)\rho(x)$ is basic (ρ a unary predicate symbol)

If $M_F \rightarrow M$ is unique, then F is **epic basic**.

e.g., $\rho(a)$ is epic basic (a a constant)
A set F of Σ-sentences is **basic** iff there is a Σ-model M_F s.t. $M \models \Sigma F$ iff there is a homomorphism $M_F \rightarrow M$.

e.g., $(\exists x)p(x)$ is basic (p a unary predicate symbol)

If $M_F \rightarrow M$ is unique, then F is **epic basic**.

e.g., $p(a)$ is epic basic (a a constant)

A **Horn clause**: $(\forall X)F \rightarrow F'$ s.t. F is epic basic, F' is basic, and $X : \Sigma \rightarrow \Sigma'$ is representable (Diaconescu, 2004)

Horn specification: (Σ, F) with F a set of Horn clauses
Adding FOL (HL) structure to arbitrary inst.

if \mathcal{S} has no FOL structure, then we can define $\text{FOL}(\mathcal{S})$ ($\text{HL}(\mathcal{S})$):

- identify (epic) basic sentences
- identify representable signature morphisms
- add FOL (HL) formulas to basic sentences

$\text{FOL}(\mathcal{S}) = \mathcal{S} \sqcup \text{FOL}(\mathcal{S})$ ($\text{HL}(\mathcal{S})$ is similarly defined)

in fact $\mathcal{S} \leftarrow \overline{\text{FOL}(\mathcal{S})} \rightarrow \text{FOL}(\mathcal{S})$ is the pullback of $\mathcal{S} \rightarrow \text{BS}(\mathcal{S}) \leftarrow \text{FOL}(\mathcal{S})$ in the category Ins of institutions with morphisms as arrows, where $\text{BS}(\mathcal{S})$ is the subinstitution corresponding to basic sentences.
Outline

- institution independent logic programming paradigms
 - institutions
 - institution independent first order logic
 - institution independent logic programming paradigms
 - open world assumption (OWA)
 - closed world assumption (CWA)
- logic programming viewpoints on web ontologies
 - institution of description logic
 - description logic and logic programming paradigms
- an institutional approach of SW stack
 - institutional meaning of RDF layer
 - institutional meaning of ontology layer
 - institutional meaning of layering
- conclusion
Logic programs are Horn specifications

The following example is from Nilson and Maluszynski's book:

\[\begin{align*}
\text{proud}(X) & \leftarrow \text{parent}(X, Y), \text{newBorn}(Y) \\
\text{parent}(X, Y) & \leftarrow \text{father}(X, Y) \\
\text{parent}(X, Y) & \leftarrow \text{mother}(X, Y) \\
\text{father}(Adam, Mary) \\
\text{newBorn}(Mary)
\end{align*} \]

\[\Sigma(P) = (\{Adam, Mary\}, \{\text{proud}, \text{parent}, \text{newborn}, \text{father}, \text{mother}\}) \]

\[F(P) \text{ is the set of the above Horn clauses} \]

\[P = (\Sigma(P), F(P)) \]
Definite Logic Programming institution with base institution \mathcal{S}, $\mathcal{LP}(\mathcal{S})$, is defined as follows:

1. identify the (epic) basic sentences;
2. construct Horn clauses;
3. the signatures are Horn specifications HSpec;
4. the model functor is $\text{Mod}(\mathcal{S})$ extended to Horn specifications;
5. the Σ-sentences are Horn queries $(\exists X)\varphi$ with φ basic;
6. the satisfaction is given by $M \models_{(\Sigma,F)} (\exists X)\varphi$ iff $M \models_{\Sigma} (\exists X)\varphi$.

Entailment systems

An entailment system (Meseguer, 1989) consists of:
- a category of signatures Sign
- a sentence functor $\text{sen} : \text{Sign} \to \text{Set}$ associating to each signature a set of sentences
- a function \vdash associating to each signature Σ an entailment relation $\vdash^\Sigma \subseteq \mathcal{P}(\text{sen}(\Sigma)) \times \text{sen}(\Sigma)$ s.t.:
 - reflexivity: $\{\varphi\} \vdash^\Sigma \varphi$
 - monotonicity: if $F \vdash^\Sigma \varphi$ and $F \subset F'$, then $F' \vdash^\Sigma \varphi$
 - tranzititivity: if $F \vdash^\Sigma \varphi_i$ for $i \in I$, and $F \cup \{\varphi_i \mid i \in I\} \vdash^\Sigma \varphi$, then $F \vdash^\Sigma \varphi$
 - \vdash-translation: if $F \vdash^\Sigma \varphi$, then for each $\phi : \Sigma \to \Sigma'$ in Sign, $\text{sen}(\phi)(F) \vdash^\Sigma \text{sen}(\phi)(\varphi)$

A non-monotonic entailment system satisfies only reflexivity, tranzititivity, and \vdash-translation
Sound and complete entailment systems

- $\mathcal{S} = (\text{Sign}, \text{sen}, \text{Mod}, \models)$ an institution
- $\mathcal{E} = (\text{Sign}, \text{sen}, \vdash)$ an entailment system for \mathcal{S}
- \mathcal{E} is **sound** iff $F \vdash_{\Sigma} \varphi$ implies $(\Sigma, F) \models_{\Sigma} \varphi$
- \mathcal{E} is **complete** iff $(\Sigma, F) \models_{\Sigma} \varphi$ implies $F \vdash_{\Sigma} \varphi$
- consider definite logic programs over FOL, $\mathcal{LP}(\widehat{\text{FOL}})$
- SLD-resolution is a sound and complete entailment system for $\mathcal{LP}(\widehat{\text{FOL}})$
Infering entailment systems for definite LP

Herbrand Theorem (Diaconescu, 2004). In an arbitrary institution consider a specification \((\Sigma, F)\) which has an initial model \(0_{\Sigma,F}\). Then for each query \((\exists X)\varphi\)

\[(\Sigma, F) \models (\exists X)\varphi \text{ iff } 0_{\Sigma,F} \models (\exists X)\varphi\]

- each Herbrand spec \((\Sigma, F)\) has an initial model \(0_{\Sigma,F}\) (Makowsky, 1987)
- For Horn specifications over FOL, \(0_{\Sigma,F}\) is the least Herbrand model
- define \((\Sigma, F) \vdash \varphi\) iff \(0_{\Sigma,F} \models \varphi\)
- \(\vdash\) is sound and complete
Soundness and Completeness reformulated

- $\text{Mod}^\vdash (\Sigma, F) = \text{the set of } \Sigma\text{-models that satisfy all sentences } \varphi \text{ s.t. } (\Sigma, F) \vdash \varphi$

- \mathcal{E} is **sound** iff
 $\text{Mod}^\vdash (\Sigma, F) \subseteq \text{Mod}(\Sigma, F)$

- \mathcal{E} is **complete** iff
 $\text{Mod}(\Sigma, F) \subseteq \text{Mod}^\vdash (\Sigma, F)$

- for definite logic programming we have
 $\text{Mod}(\Sigma, F) = \text{Mod}^\vdash (\Sigma, F)$
Logic Programming with negation

\textbf{CWA}: If we cannot prove \((\Sigma, F) \models \varphi\), then we add \(\neg \varphi\) to \(F\) or, equivalently, restrict \(\text{Mod}^\models (\Sigma, F)\) to those models satisfying \(\neg \varphi\).

Generally, the problem of showing \((\Sigma, F) \nvdash \varphi\) is not decidable and therefore some practical solutions were proposed.

general Horn clauses:
\[(\forall X) \varphi_1 \land \cdots \land \varphi_m \land \neg \varphi_{m+1} \land \cdots \land \neg \varphi_n \rightarrow \varphi_0\]
such that \(\varphi_i\) is epic basic, for each \(i = 0, \ldots, n\), and \(X : \Sigma \rightarrow \Sigma'\) is representable.

\(\text{GHSpec} = \text{general Horn specifications (general logic prgms)}\)
Some solutions

- **negation as failure**
 \[\text{(NAF)} \quad \frac{\text{if } \varphi \text{ has no a finitely failed SLD-tree}}{(\Sigma, F) \vdash \neg \varphi} \]

- **stable semantics** (Gelfond and Lifschitz, 1988)
 if \(M \) is an Herbrand model, then \((\Sigma, F)_M\) is the program obtained from \((\Sigma, F)\) by deleting
 - any general clause having a \(\neg \varphi \) in its body with \(\varphi \in M \), and
 - all negative literals in the remaining clause bodies

\((\Sigma, F)_M\) is a definite program, so it has the least Herbrand model \(M_{\Sigma,F} \)

\(M \) is **stable** if \(M = M_{\Sigma,F} \)

\[
\begin{align*}
tired & \leftarrow \neg \text{works} \\
\text{works} & \leftarrow \neg \text{tired}
\end{align*}
\]

we may have several stable models

\(M_1 = \{ \text{tired} \} \) and \(M_2 = \{ \text{works} \} \)

cautious entailment: \((\Sigma, F) \vdash \varphi \) iff \(M \models \varphi \) for all stable models
Some solutions

- **well-founded semantics** (Gelder et al., 1991)

 \[
 \begin{align*}
 \text{odd}(s(s(x))) & \leftarrow \text{odd}(x) \\
 \text{even}(x) & \leftarrow \neg\text{odd}(x) \\
 \text{odd}(s(0)) &
 \end{align*}
 \]

 \[M = \emptyset\]

 \[T_{\Sigma,F}(M) = \{\text{odd}(s(0))\}\] (the greatest “computed” set)

 \[U_{\Sigma,F}(M) = \{\text{odd}(s^{2n}(0))\}\] (the greatest “unfounded” set)

 \[W_{\Sigma,F}(M) = T_{\Sigma,F}(M) \cup \neg U_{\Sigma,F}(M)\]

 the well founded model \(W = \) the least fixpoint of \(W_{\Sigma,F}\)

 entailment: \((\Sigma, F) \vdash F\) iff \(W \models F\)

- **stratified semantics** (Apt, Blair and Walker, 1988)

 stratified programs \((\Sigma_1, F_1) \cup \cdots \cup (\Sigma_n, F_n)\)

 if \(\neg p(\ldots)\) (or \(p(\ldots)\)) occurs in a body in strata \(P_i\), then \(p\) is the head of clause in \((\Sigma_1, F_1) \cup \cdots \cup (\Sigma_{i-1}, F_{i-1}) (\Sigma_1, F_1) \cup \cdots \cup (\Sigma_i, F_i)\)

 a stratified program has a standard model \(M\) (also minimal)

 entailment: \((\Sigma, F) \vdash F\) iff \(M \models F\), where \(M\) is the standard model
Problems with the monotonicity

we may have $(\Sigma, F) \vdash \varphi$, $F \subset F'$, and $(\Sigma, F') \nvdash \varphi$ (e.g., $\varphi = \neg \varphi'$ and $F' = F \cup \{\varphi'\}$)

therefore not any morphism $\phi : (\Sigma, F) \rightarrow (\Sigma', F')$ is appropriate for general logic programs

$\text{GHSpec}^\rightarrow$ is the full subcategory of GHSpec corresponding to the morphisms $\phi : (\Sigma, F) \rightarrow (\Sigma', F')$ such that for each M' in $\text{Mod}^\rightarrow (\Sigma', F')$, $M' \upharpoonright \phi$ is in $\text{Mod}^\rightarrow (\Sigma, F)$

in this way we restore the satisfaction condition:
$M' \upharpoonright \phi \models (\Sigma, F) \varphi \iff M' \models (\Sigma', F') \text{sen}(\phi)(\varphi)$
General LP in arbitrary institutions

\[\mathcal{S} = (\text{Sign}, \text{Mod}, \text{sen}, \models) \]

\[\mathcal{E} = (\text{Sign}, \text{GHClause}, \vdash) \] a (non-monotonic) entailment system

define \(\mathcal{LP}^\vdash(\mathcal{S}) \), where

- the sentences are \(\text{GHSpec}^\vdash \);
- the model functor is \(\text{Mod}^\vdash \) restricted to \(\text{GHSpec}^\vdash \);
- sentences are Horn queries;
- the satisfaction relation \(\models^\vdash(\Sigma, F) \) is \(\models(\Sigma, \text{setsen}) \) restricted to \(\text{Mod}^\vdash(\Sigma, F) \)

we have \(F \vdash^\Sigma \varphi \) iff \((\Sigma, F) \models^\vdash \varphi \)
Datalog

This example is inspired from Foundations of Databases by Abiteboul, Hull, and Vianu:

<table>
<thead>
<tr>
<th>Links</th>
<th>StReachable(x, x)</th>
<th>StReachable(x, y) ← stReachable(x, z), Links(u, z, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC820 Zürich</td>
<td>Bern</td>
<td></td>
</tr>
<tr>
<td>IC820 Bern</td>
<td>Thum</td>
<td></td>
</tr>
<tr>
<td>S5 15542 Bern</td>
<td>Gümenen</td>
<td></td>
</tr>
<tr>
<td>S5 15542 Gümenen</td>
<td>Kerzer</td>
<td></td>
</tr>
<tr>
<td>BUS 5206 Gümenen</td>
<td>Münchenwiller</td>
<td></td>
</tr>
<tr>
<td>BUS 5206 Münchenwiller</td>
<td>Murten</td>
<td></td>
</tr>
</tbody>
</table>

\[\Sigma^{xtl} = \{ \text{Links} \}, \Sigma^{ntl} = \{ \text{StReachable} \}, \Sigma = \Sigma^{xtl} \cup \Sigma^{ntl} \]

the database is a \(\Sigma^{xtl} \)-model (knowledge base \(kb \))

\(((\Sigma, F), kb) \)-model is a \(\Sigma \)-model \(M \) s.t. \(M|_{\Sigma^{xtl}} = kb \)
we assume that Sign has pushouts

(Σ, F) a Horn specification

Σ^{xtl} is \textbf{extensional} for (Σ, F) if

1. there exists $\iota : \Sigma^{xtl} \rightarrow \Sigma$

2. any basic sentence occurring only in the bodies of the clauses is the image of a $\Sigma^{xtl}(X)$-sentence, where $X : \Sigma^{xtl} \rightarrow \Sigma^{xtl}(X)$ is representable signature morphism and $\Sigma^{xtl}(X) \rightarrow \Sigma(X) \leftarrow \Sigma$ is the pushout of (X, ι)

3. if $\phi : (\Sigma, F) \rightarrow (\Sigma', F')$, then $\phi(\Sigma^{xtl}) \subseteq \Sigma'^{xtl}$

4. if $\Sigma^{xtl'}$ satisfies 1-3, then there exists $\Sigma^{xtl} \rightarrow \Sigma^{xtl'}$
Definite LP with Knowledge Bases (KB)

\[\mathfrak{S} = (\text{SignMod}, \text{sen}, \models) \]

consider KB : \text{HSpec}^{op} \to \text{Cat} that maps each Horn specification \((\Sigma, F)\) into \text{Mod}(\Sigma^{x\text{tl}}) (a (\Sigma, F)-knowledge base is a \(\Sigma^{x\text{tl}}\)-model)

define \(L^\mathcal{P}^{KB}(\mathfrak{S})\), where

- the category of signatures is Grothendieck category \(KB^\#\), i.e., a signature is a pair \(((\Sigma, F), kb)\), where \((\Sigma, F) \in \text{HSpec, and } kb\) is a \((\Sigma, F)\)-knowledge base;
- the model functor maps each signature \(((\Sigma, F), kb)\) into the subcategory of \text{Mod}(\Sigma, F) induced by the set of models \(M\) with \(M\models^{\Sigma^{x\text{tl}}} kb\);
- the sentences are Horn queries;
- the satisfaction is given by \(M \models ((\Sigma, F), kb) \varphi \iff M \models (\Sigma, F) \varphi\).
General LP with KB in arbitrary institutions

$$\mathcal{S} = (\text{Sign}, \text{Mod}, \text{sen}, \models)$$

$$\mathcal{E} = (\text{Sign}, \text{GHClause}, \vdash)$$ a (non-monotonic) entailment system

$$\text{KB} : \text{GHSpec} \vdash^{op} \rightarrow \text{Cat}$$

define $$\mathcal{LP}^{\text{KB}, \vdash}_{\mathcal{S}}$$, where

- the signature are given by $$\text{KB}^\#$$;
- the model functor maps each signature $$((\Sigma, F), kb)$$ into the subcategory of $$\text{Mod}^\vdash(\Sigma, F)$$ induced by the set of models $$M$$ with $$M \models_{\Sigma^{xt}} kb$$;
- the sentences are Horn queries;
- the satisfaction relation $$\models^\vdash((\Sigma, F), kb)$$ is the restriction of $$\models((\Sigma, F), kb)$$ to $$\text{Mod}^\vdash((\Sigma, F), kb)$$.
Conclusion

- institutions formalizes the intuitive notion of logical system using a categorical abstract model theory
- the main FOL concepts (FOL variable, atomic formulas, propositional connectors, and FOL quantifiers) can be defined in arbitrary institutions
- we take the advantage of these constructions to formulate the main logic programming paradigms in arbitrary institutions
Questions?

Thank you!