On the Complexity of the Behavioral Properties

Grigore Roşu1 \quad Dorel Lucanu2

1Department of Computer Science
University of Illinois at Urbana-Champaign, USA
grusu@illinois.edu

2Faculty of Computer Science
Alexandru Ioan Cuza University, Iaşi, Romania
dlucanu@info.uaic.ro

November 2009, Eindhoven
Plan
A stack class

public class Array
{
 int[]! items;
 //...
 public void put(int elt, int idx)
 requires 0 <= idx;
 {
 items[idx] = elt;
 }

 public virtual int this [int idx]
 {
 [Pure]
 get
 requires 0 <= idx;
 {
 return items[idx];
 }
 }
}

class Stack
{
 Array a;
 int t;
 int err = System.Int32.MinValue;
 //...
 public void pop()
 {
 if (t > 0)
 t--;
 }

 public void push(int elt)
 {
 a.put(elt, ++t);
 }
}

the goal is to prove pop(S.push(E)) = S
(theory IDX is
 sort Idx .
 including INT .
 op _+_ : Idx Int -> Idx .
 op _-_ : Idx Int -> Idx .
 op equal : Idx Idx -> Bool .
 op _<_ : Idx Idx -> Bool .
 op 0 : -> Idx .

 vars I J : Idx .

 eq (I + 1)- 1 = I .
 eq equal(I, I) = true .
 ceq equal(I, J) = false if I < J = true .
 eq I < I + 1 = true .
 eq 0 < I + 1 = true .
 ceq I - 1 < J = true if I < J = true .
endtheory)
A theory of arrays

(theory ARRAY is
 sorts Arr Elt .
 including IDX .
 op nil : -> Arr .
 op put : Elt Idx Arr -> Arr .
 op _'[_'] : Arr Idx -> Elt .

 vars I J : Idx . var A : Arr .
 var E : Elt .

 geq put(E, I, A) [J] =
 E if equal(I, J) = true []
 A[J] if equal(I, J) = false []

 endtheory)
An equational theory of stacks implemented with arrays

(theory STACKARRIMP is
 including ARRAY .
sorts Stack .
op <_,_> : Idx Arr -> Stack .
op err : -> Elt .

op empty : -> Stack .
op push : Elt Stack -> Stack .
op top_ : Stack -> Elt .
op pop_ : Stack -> Stack .

eq empty = < 0, nil > .
eq push(E, < I, A >) = < I + 1, put(E, I + 1, A) > .
geq top < I, A > =
 A[I] if 0 < I = true []
 err if 0 < I = false []

 geq pop < I, A > =
 < I - 1, A > if 0 < I = true []
 < I, A > if 0 < I = false []

endtheory)
An equational theory of stacks implemented with arrays

(theory STACKARRIMP is
 including ARRAY.
sorts Stack.
 op `<',>` : Idx Arr -> Stack.
 op err : -> Elt.

 op empty : -> Stack.
 op push : Elt Stack -> Stack.
 op top_ : Stack -> Elt.
 op pop_ : Stack -> Stack.

 eq empty = < 0, nil >.
 eq push(E, < I, A >) = < I + 1, put(E, I + 1, A) >.
 geq top < I, A > =
 A[I] if 0 < I = true []
 err if 0 < I = false []

 geq pop < I, A > =
 < I - 1, A > if 0 < I = true []
 < I, A > if 0 < I = false []

endtheory)

pop(push(E:Elt, < I:Idx, A:Arr >)) ≠ < I:Idx, A:Arr >
An equational theory of stacks implemented with arrays

(theory STACKARRIMP is
 including ARRAY.
 sorts Stack.
 op <_,_> : Idx Arr -> Stack.
 op err : -> Elt.

 op empty : -> Stack.
 op push : Elt Stack -> Stack.
 op top_ : Stack -> Elt.
 op pop_ : Stack -> Stack.

 eq empty = <0, nil>.
 eq push(E, <I, A>) = <I + 1, put(E, I + 1, A)>
 geq top <I, A> =
 A[I] if 0 < I = true []
 err if 0 < I = false []

 geq pop <I, A> =
 <I - 1, A> if 0 < I = true []
 <I, A> if 0 < I = false []

endtheory)

pop(push(E:Elt, <I:Idx, A:Arr>)) \neq <I:Idx, A:Arr>
Behaviorally equivalent stacks

- experiments:
 \[\text{top}(S), \text{top}(\text{pop}(S)), \text{top}(\text{pop}(\text{pop}(S))), \ldots \]
- two stacks \(S \) and \(S' \) are behaviorally equivalent, \(S \equiv S' \), iff
 \[\text{top}(S) = \text{top}(S') \]
 \[\text{top}(\text{pop}(S)) = \text{top}(\text{pop}(S')) \]
 \[\text{top}(\text{pop}(\text{pop}(S))) = \text{top}(\text{pop}(\text{pop}(S')))) \]

 \ldots

 i.e., \(S \equiv S' \) iff \(C[S] = C[S'] \) for all experiments \(C \)
- \(\text{top}(\ast:\text{Stack}) \) and \(\text{pop}(\ast:\text{Stack}) \) are called derivatives
- \(\text{pop}(\text{push}(E:\text{Elt}, < I:\text{Id}, A:\text{Arr} >)) \equiv < I:\text{Id}, A:\text{Arr} > \)
An **behavioral** theory of stacks implemented with arrys

```
(theory STACKARRIMP is
  including ARRAY .
  sorts Stack .
  op <\_,\_> : Idx Arr -> Stack .
  op err : -> Elt .

  op empty : -> Stack .
  op push : Elt Stack -> Stack .
  op top_ : Stack -> Elt .
  op pop_ : Stack -> Stack .

  eq empty = < 0, nil > .
  eq push(E, < I, A >) = < I + 1, put(E, I + 1, A) > .
  geq top < I, A > =
    A[I] if 0 < I = true []
    err if 0 < I = false []
  .
  geq pop < I, A > =
    < I - 1, A > if 0 < I = true []
    < I, A > if 0 < I = false []
  .

  derivative top *:Stack .
  derivative pop *:Stack .
endtheory)
```
An behavioral theory of stacks implemented with arrys

(theory STACKARRIMP is
 including ARRAY .
 sorts Stack .
 op <_,_> : Idx Arr -> Stack .
 op err : -> Elt .

 op empty : -> Stack .
 op push : Elt Stack -> Stack .
 op top_ : Stack -> Elt .
 op pop_ : Stack -> Stack .

 eq empty = < 0, nil > .
 eq push(E, < I, A >) = < I + 1, put(E, I + 1, A) > .
 geq top < I, A > =
 A[I] if 0 < I = true []
 err if 0 < I = false []

 geq pop < I, A > =
 < I - 1, A > if 0 < I = true []
 < I, A > if 0 < = false []

 derivative top *:Stack .
 derivative pop *:Stack .
endtheory)
Streams

- a stream (of bits) \(S \) is an infinite sequence \(b_1 : b_2 : b_3 : \ldots \)

 zeroes = 0 : zeroes

 ones = 1 : ones

 blink = 0 : 1 : blink

 \[\text{zip}(B : S, S') = B : \text{zip}(S', S) \]

- the derivatives are \(\text{hd}(\ast : \text{Stream}) \) (head) and \(\text{tl}(\ast : \text{Stream}) \) (tail)

- operation specifications in terms of \(\text{hd}() \) and \(\text{tl}() \):

 \[\begin{align*}
 \text{hd}(\text{zeroes}) &= 0, \\
 \text{tl}(\text{zeroes}) &= \text{zeroes}, \ldots \\
 \text{hd}(\text{zip}(B : S, S')) &= B, \\
 \text{tl}(\text{zip}(B : S, S')) &= \text{zip}(S', S)
 \end{align*} \]

- experiments: \(\text{hd}(S), \text{hd}(\text{tl}(\ast : \text{Stream})), \text{hd}(\text{tl}(\text{tl}(\ast : \text{Stream}))), \ldots \)

- two streams \(S \) and \(S' \) are behaviorally equivalent, \(S \equiv S' \), iff

 \[\begin{align*}
 \text{hd}(S) &= \text{hd}(S'), \\
 \text{hd}(\text{tl}(S)) &= \text{hd}(\text{tl}(S')), \\
 \text{hd}(\text{tl}(\text{tl}(S))) &= \text{hd}(\text{tl}(\text{tl}(S'))), \ldots
 \end{align*} \]

- example of behavioral equality: \(\text{blink} \equiv \text{zip}(\text{zeroes}, \text{ones}) \)
Streams

- A stream (of bits) S is an infinite sequence $b_1 : b_2 : b_3 : \ldots$
 - $zeroes = 0 : zeroes$
 - $ones = 1 : ones$
 - $blink = 0 : 1 : blink$
 - $zip(B : S, S') = B : zip(S', S)$
- The derivatives are $hd(\ast:\text{Stream})$ (head) and $tl(\ast:\text{Stream})$ (tail)
- Operation specifications in terms of $hd()$ and $tl()$:
 - $hd(zeroes) = 0$, $tl(zeroes) = zeroes, \ldots$
 - $hd(zip(B : S, S')) = B : tl(zip(B : S, S')) = zip(S', S)$
- Experiments: $hd(S)$, $hd(tl(\ast:\text{Stream}))$, $hd(tl(tl(\ast:\text{Stream})))$, \ldots
- Two streams S and S' are behaviorally equivalent, $S \equiv S'$, iff
 - $hd(S) = hd(S')$, $hd(tl(S)) = hd(tl(S'))$
 - $hd(tl(tl(S))) = hd(tl(tl(S')))$ \ldots
- Example of behavioral equality: $blink \equiv zip(zeroes, ones)$
many-sorted signatures: (S, Σ)
$(S = \text{set of sorts, } \Sigma = \text{set of operation names})$

\(\Sigma\)-equations: $(\forall X) t = u$

many-sorted abstract logic for equality \(\mathcal{L} = (\text{Form}_{\mathcal{L}}, \vdash_{\mathcal{L}})\):
for each signature \(\Sigma\)
- a set of \(\Sigma\)-sentences \(\text{Form}_{\mathcal{L}}^{\Sigma}\);
- \(\Sigma\)-specification is a signature \((S, \Sigma)\) and a set \(F\) of \(\Sigma\)-sentences;
- a satisfaction, or entailment relation \(\vdash_{\mathcal{L}}^{\Sigma}\) between \(\Sigma\)-specifications and \(\Sigma\)-equations;

examples:
- First-order logic with equality (FOL)
- Conditional equational logic (CEQ)
- (Unconditional) equational logic (EQ)
- Rewrite systems (REW)
- Join rewrite systems (JOIN)
a Σ-context for sort $h \in S$ is a Σ-term C having precisely one occurrence of a (special) variable \ast of sort h.

- behavioral signature is a pair (Σ, Δ), where Σ is a signature and Δ is a set of Σ-contexts, which we call derivatives.

- if $\delta[\ast:h] \in \Delta$ then the sort h is called a hidden sort. Remaining sorts are called data, or visible, sorts;

- experiment:
 - each visible $\delta[\ast:h] \in \Delta$ is an experiment, and
 - if $C[\ast:h']$ is an experiment and $\delta[\ast:h] \in \Delta$, then so is $C[\delta[\ast:h]]$
Plan
Behavioral equivalence

Behavioral satisfaction
\[\mathcal{B} \models e \iff \mathcal{B} \vdash e, \text{ if } e \text{ is visible, and } \mathcal{B} \vdash C[e] \text{ for each experiment } C, \text{ if } e \text{ is hidden} \]

Behavioral equivalence of \(\mathcal{B} \): \(\equiv_{\mathcal{B}} \overset{\text{def}}{=} \{ e \mid \mathcal{B} \models e \} \)

A set of equations \(\mathcal{G} \) is behaviorally closed iff
\[\mathcal{B} \vdash \text{visible}(\mathcal{G}) \text{ and } \Delta(\mathcal{G} - \mathcal{B}^\bullet) \subseteq \mathcal{G}, \]
where \(\mathcal{B}^\bullet = \{ e \mid \mathcal{B} \vdash e \} \)

Theorem

(coinduction) If \(\vdash \mathcal{L} \) is reflexive, monotonic, transitive, and \(\Delta \)-congruence (if \(E \vdash e \) then \(E \vdash \Delta[e] \)), then the behavioral equivalence \(\equiv \) is the largest behaviorally closed set of equations.
Special Contexts

Context $\gamma[\star:h]$ is special iff for any experiment C for γ there is some term t such that

1. $\mathcal{B} \vdash C[\gamma[\star:h]] = t$ and
2. each occurrence of $\star:h$ in t appears in a subterm which is an experiment of depth smaller than or equal to that of C.

Examples:

- $\text{zip}(\star:\text{Stream}, S)$ and $\text{zip}(S, \star:\text{Stream})$ are special contexts, as well as any combination of these.
- if the stream operations $\text{odd}(S)$ and $\text{even}(S)$ are defined by
 \[
 \text{hd}(\text{odd}(S)) = \text{hd}(s) \quad \text{even}(S) = \text{odd}(\text{tl}(S))
 \]
 \[
 \text{tl}(\text{odd}(S)) = \text{even}(\text{tl}(S))
 \]
 then $\text{odd}(\star:\text{Stream})$ is not special:
 \[
 \text{hd}(\text{tl}(\text{odd}(\star:\text{Stream}))) = \text{hd}(\text{tl}(\text{tl}(\star:\text{Stream})))
 \]
 and the depth of $\text{hd}(\text{tl}(\text{tl}(\star:\text{Stream})))$ is larger than the depth of $\text{hd}(\text{tl}(\star:\))$
 the same is true for $\text{even}(\star:\text{Stream})$.

G. Roșu, D. Lucanu (UIUC, UAIC)
If $\text{odd}(S)$ were special, then one would be able to wrongly “prove” by coinduction behavioral equivalences:

- assume a stream a defined by $\text{hd}(a) = 0$ and $\text{tl}(a) = \text{odd}(a)$
- the following wrongly “proves” that $a \equiv \text{zeroes}$ by coinduction:
 - pick $a \sim \text{zeroes}$
 - show that $\text{hd}(a) = \text{hd}(\text{zeroes})$ (obviously)
 - show that $\text{tl}(a) \sim \text{tl}(\text{zeroes})$

 ($\text{tl}(a) = \text{odd}(a) \sim \text{odd}(\text{zeroes}) = \text{zeroes} = \text{tl}(\text{zeroes})$)
 - conclude that $a \equiv \text{zeroes}$ holds, because behavioral equivalence is the largest binary relation compatible with hd and tl ($\sim \subseteq \equiv$).

- This is a contradiction because the stream $a = 0:0:\text{ones}$ also satisfies the two equations of a.
Behavioral Consistency

Intuition:
the data is rigid from a behavioral point of view, that is, the hidden part can only use it but cannot distort it.
E.g., if \(\text{STREAM} \vdash \text{zeroes} = \text{ones} \), the we conclude
\[0 = \text{hd}(\text{zeroes}) = \text{hd}(\text{ones}) = 1. \]

Formal definition:
\(B = ((\Sigma, \Delta), F) \) is behaviorally consistent iff for any data equation \(e \), if \(B \models e \) (or, equivalently, \(B \vdash e \)) then \(B \upharpoonright V \vdash e \), where \(B \upharpoonright V \) is the “visible” restriction of \(B \) (i.e., \(\Sigma \upharpoonright V \)-specification consisting of the visible sentences in \(F \)).
Behavioral Well-Definedness

[inspired by Hans Zantema’s paper RTA 2099]

Intuition: \mathcal{B} well-defines t iff any “clone” t' of t behaves like t, i.e., t and t' are behaviorally equivalent

The questions is what is a “clone”?

Given $\mathcal{B} = ((\Sigma, \Delta), F)$, let \mathcal{B}' extend \mathcal{B} by

- adding to Σ a copy σ' of each $\sigma \in \Sigma - (\Sigma|_V \cup \Delta)$
- and to F a copy φ' of each $\varphi \in F$, where φ' is obtained by replacing each $\sigma \in \Sigma - (\Sigma|_V \cup \Delta)$ in φ with σ'.

Behavioral Well-Definedness

\(B \) well-defines term \(t \) with variables in \(X \), or \(t \) is well-defined by \(B \), iff \(B' \models (\forall X) t = t' \), where \(t' \) is obtained by replacing each \(\sigma \in \Sigma - (\Sigma | V \cup \Delta) \) in \(t \) with \(\sigma' \).

Example: the stream \(a \) specified by the equations \(hd(a) = 0 \) and \(tl(a) = odd(a) \) is not well-defined, since
\[
hd(tl^2(a)) = hd(tl(odd(a))) = hd(odd(tl^2(a))) = hd(tl^2(a)) = \ldots
\]
the same is true for any clone \(a' \) of \(a \), therefore no chance to show that \(hd(tl^2(a)) = hd(tl^2(a')) \).
Behavioral Productivity

– strong related to the behavioral well-Definedness, but are NOT identical
– inspired from the similar notion for the infinitary term rewriting systems, but, again, the two notions are NOT the same
– intuitively, a behavioral specification B is productive for a term t iff any Δ-experiment over t is evaluable.
– stream well-defined but not productive: $(\forall S) S = a$
– stream not productive when specified as infinitary trs but behaviorally productive:
 $zeros \rightarrow 0:zeros, \ f(x:s) \rightarrow g(f(s)), \ g(x:s) \rightarrow zeros$
[Hans Zantema, RTA 2009, Example 4]
Proposition

If the abstract logic \mathcal{L}

- is **monotone**, that is, if $(\Sigma, F) \vdash_{\mathcal{L}} e$ and (Σ', F') is a Σ'-specification such that $\Sigma \subseteq \Sigma'$ and $F \subseteq F'$ then $(\Sigma', F') \vdash_{\mathcal{L}} e$, and

- is α-**invariant**, that is, if $(\Sigma, F) \vdash_{\mathcal{L}} e$ then $(\Sigma[f'/f], F[f'/f]) \vdash_{\mathcal{L}} e[f'/f]$, where $\cdot[f'/f]$ substitutes fresh operation f' for f, and

- has the **equational join property**, that is, $B \vdash (\forall X) t = w$ and $B \vdash (\forall X) u = w$ implies $B \vdash (\forall X) t = u$, then B productive for term t implies B well-defined for term t.
Theorem

Let $L = \text{JOIN}$ and let $B = ((\Sigma, \Delta), R)$ be a behavioral specification (i.e., a Σ-term rewrite system R with a set of derivatives Δ). Then:

1. If the rules in R “do not introduce” operations in $\Sigma - (\Sigma \upharpoonright \mathcal{V} \cup \Delta)$, that is, if for each $(l \rightarrow r) \in R$ it is the case that if l does not contain operations in $\Sigma - (\Sigma \upharpoonright \mathcal{V} \cup \Delta)$ then r does not contain operations in $\Sigma - (\Sigma \upharpoonright \mathcal{V} \cup \Delta)$ either, then B is well-defined on term t if and only if B is productive on term t; and

2. If R terminates, and $\Sigma - (\Sigma \upharpoonright \mathcal{V} \cup \Delta)$ contains only operations of hidden result sort, and for every $f : \bar{s} \rightarrow h$ in $\Sigma - (\Sigma \upharpoonright \mathcal{V} \cup \Delta)$ and derivative $\delta[\star : h]$ in Δ there is some rule $\delta[f(\bar{x})] \rightarrow r$ in R, then B is productive.
Plan
The class Π^0_2

A fragment of the arithmetic hierarchy:

$\Sigma^0_0 = \Pi^0_0 = \text{the set of recursive predicates}$

$\Sigma^0_1 = \{(\exists y) \mid r(x, y, z) \in \Sigma^0_0\} = \text{the set of r.e. predicates}$

$\Pi^0_2 = \{(\forall x)(\exists y) \mid r(x, y, z) \in \Sigma^0_0\}$

A canonical Π^0_2-complete problem is

$\text{Totality}(M) := (\forall x)(\exists n) \text{Stop}(x, n, M)$, asking whether computational device (Turing machine, program, rewrite system, etc.) M stops on all its inputs

If M is a trs, $\text{Totality}(M)$ is equivalent to terminating property

[J.G. Simonsen, RTA 2009]
Main result

A scheme for proving Π^0_2-completeness

Definition

An abstract logic \mathcal{L} is called **Turing complete** iff:

1. $\vdash_{\mathcal{L}} \Sigma$ is recursively enumerable for each signature Σ, and
2. it can encode a universal computational model.

Theorem

If \mathcal{L} be a Turing complete abstract logic, $\text{Problem}(\mathcal{B}, \text{inp})$ a behavioral problem, for each (Σ_M, F_M) encoding a machine M there is $\mathcal{B}(\Sigma_M, F_M)$ s.t.:

1. there is a bijective mapping between the inputs x of M and the experiments in $\mathcal{B}(\Sigma_M, F_M)$; let C^x denote the context associated to x;
2. there is a recursive predicate $\text{pred}(x, n, \mathcal{B}(\Sigma_M, F_M))$ which holds if and only if $\mathcal{B}(\Sigma_M, F_M) \vdash C^x[\varphi(\text{inp})]$ and its Gödel number is $\leq n$;
3. $(\exists n) \text{pred}(x, n, \mathcal{B}(\Sigma_M, F_M))$ holds iff $(\exists n) \text{Stop}_L(\langle M, x \rangle = \downarrow, n, (\Sigma_M, F_M))$;

then $\text{Totality}(M) \iff \text{Problem}(\mathcal{B}(\Sigma_M, F_M), \text{inp})$.

G. Roșu, D. Lucanu (UIUC, UAIC) Complexity of the Behavioral Properties November 2009, Eindhoven 25 / 1
The following problems are Π_2^0-complete:

BehavioralEquivalence
- **Instance**: $\mathcal{B}, \mathcal{L}, e$
- **Question**: $\mathcal{B} \vdash \mathcal{L} e$?

BehavioralConsistency
- **Instance**: \mathcal{B}, \mathcal{L}
- **Question**: Is \mathcal{B} consistent?

BehavioralWell − Definedness
- **Instance**: $\mathcal{B}, \mathcal{L}, t$
- **Question**: Does \mathcal{B} well defines t?

SpecialContext
- **Instance**: $\mathcal{B}, \mathcal{L}, \gamma$
- **Question**: Is γ special?

BehavioralProductivity
- **Instance**: $\mathcal{B}, \mathcal{L}, t$
- **Question**: Is \mathcal{B} productive for t?
Plan
Related Approaches

J. G. Simonsen. The Π^0_2-completeness of most of the properties of rewriting systems you care about (and productivity). In *Proceedings of RTA’09*, volume 5595 of *LNCS*, pages 335–349, 2009.

Future work

- it would be nice to have in CIRC specification static analysis means checking for behavioral properties
- integrate CIRC into a uniform and integrated rewriting-based framework for the design and analysis of programming languages (e.g., for verifying invariants)
Thanks!