Dorel LUCANU

University “Al.I.Cuza” of Iași
Department of Computer Science
Berthelot 16
6600-Iași, Romania

e-mail: dlucanu@infoiasi.ro
Understanding CafeOBJ by examples

(Introduction to concurrent object-oriented specification)

Contents

• Introduction
• Preliminaries
• Small examples
• A first step in concurrent connection
• Hidden rewriting specification
• Refinement
• Simulation under a vertical signature morphism
• Proving refinement using a simulation
• Fairness
• A second step in concurrent connection
• A complex example: watch (?)
• Conclusions
Refinement

A (concrete) specification C refines a (an abstract) specification A via the signature morphism ϕ if for every model M of C, the reduct ϕM is a model of A.

Proving refinement correctness by coinduction

Strategy

1. Define a relation R on TC.
2. Prove that R is a $\phi \Sigma$-congruence. This consists in two steps:
 (a) Prove that $t_1 R t_1', \ldots, t_n R t_n'$ implies $\phi(\sigma)(t_1, \ldots, t_n) R \phi(\sigma)(t_1', \ldots, t_n')$ for all $\sigma \in \Sigma$ and $t_i, t_i' \in TC$, $i = 1, \ldots, n$.
 (b) Prove that $t R t'$ implies $t =_{EC} t'$ if $t, t' \in TC_v$ for some $v \in V$.
3. Prove that $\phi(\theta(l)) R \phi(\theta(r))$ for all equations $(\forall X) l = r$ in E^A and assignments $\theta : X \to TC$.

Candidates for R:

1. behavioural equivalence \sim:

 $t \sim t'$ iff $c[t] =_{EC} c[t']$ for all visible contexts $c \in TC[z]$.
2. relation \sim when $\Sigma = \Gamma + \Delta$:

 $t \sim t'$ iff $\phi(c)[t] =_{EC} \phi(c)[t']$ for all visible contexts $c \in T_\Delta[z]$.

 We have only to prove that \sim is $\phi(\Gamma)$-congruence.
3. relation \sim when all operators in Δ are unary:

 $t \sim t'$ iff $\phi(\sigma)[t] =_{EC} \phi(\sigma)[t']$ for all $\sigma \in \Delta$.

Example: counters 1 (definitions)

mod* COUNTER-01 {
 [Counter1]
 protecting(NAT)
 op init1 : -> Counter1
 bop inc1 : Counter1 -> Counter1
 bop clear : Counter1 -> Counter1
 bop val : Counter1 -> Nat
 var C : Counter1
 eq val(init1) = 0 .
 eq val(clear(C)) = 0 .
 eq val(inc1(init1)) = 0 .
 eq val(inc1(clear(C))) = 0 .
 eq val(inc1(inc1(C))) = s s val(C) .
}

mod* COUNTER-2 {
 [Counter2]
 protecting(NAT)
 op init2 : -> Counter2
 bop inc2 : Counter2 -> Counter2
 bop clear : Counter2 -> Counter2
 bop val : Counter2 -> Nat
 var C : Counter2
 eq val(init2) = 0 .
 eq val(clear(C)) = 0 .
 eq val(inc2(C)) = s s val(C) .
}

mod* XCOUNTER-01 {
 protecting(COUNTER-01)
 bop inc2 : Counter1 -> Counter1
 var C : Counter1
 beq inc2(C) = inc1(inc1(C)) .
}
Example: counters 1 (proof environment)

mod PROOF {
 -- environment for proving that XCOUNTER-01 refines COUNTER-2:
 -- Version 1
 protecting(XCOUNTER-01)
 op _R_ : Counter1 Counter1 -> Bool {comm}
 vars C C1 C2 : Counter1

 eq inc1(init1) R init1 = true .
 eq inc1(inc1(init1)) R inc1(init1) = false .
 eq inc1(inc1(C1)) R inc1(inc1(C2)) = C1 R C2 .
 eq clear(C1) R clear(C2) = true .
 eq inc1(clear(C1)) R clear(C2) = true .
 eq inc1(clear(C1))) R inc1(clear(C2)) = false .

 ops c c1 c2 : -> Counter1

 eq C R C = true .
}
Example: counters 1 (proof score 1)

-- prove that \(R \) is congruent with "val" by structural induction

-- -- induction basis
open PROOF
red val(inc1(init1)) == val(init1) . -- it should be true
close
-- -- inductive step
open PROOF
-- hypothesis
eq val(c1) = val(c2) .
-- conclusion
red val(inc1(inc1(c1))) == val(inc1(inc1(c2))) . -- it should be true
red val(clear(c1)) == val(clear(c2)) . -- it should be true
red val(inc1(clear(c1))) == val(clear(c2)) . -- it should be true
close

-- prove that \(R \) is congruent with "inc2"
open PROOF
-- hypothesis
eq c1 R c2 = true .
-- conclusion
red inc2(c1) R inc2(c2) . -- it should be true
close

-- prove that \(R \) is congruent with "clear" (the proof is trivial)
open PROOF
-- hypothesis
eq c1 R c2 = true .
-- conclusion
red clear(c1) R clear(c2) . -- it should be true
close

-- prove the equations in COUNTER-2
open PROOF
red val(inc2(c)) == s s val(c) . -- it should be true
-- it does not exist behavioural equations
close
Example: counters 1 (proof score 2)

mod PROOF1
{
 -- environment for proving that XCOUNTER-01 refines COUNTER-2:
 -- Version 2
 protecting(XCOUNTER-01)
 op _SMILE_: Counter1 Counter1 -> Bool
 vars C C1 C2 : Counter1

 eq C1 SMILE C2 = (val(C1) == val(C2)) .

 ops c c1 c2 : -> Counter1
}

-- prove that R is \phi(\Gamma)-congruence

open PROOF1
-- hypothesis
eq val(c1) = val(c2) .
-- conclusion
red inc2(c1) SMILE inc2(c2) . -- it should be true
red clear(c1) SMILE clear(c2) . -- it should be true
close

-- prove the equations in COUNTER-2

open PROOF1
red val(inc2(c)) == s s val(c) . -- it should be true
close
Simulation under a vertical signature morphism

Consider \(SP = (H, \Sigma, E) \) and \(SP' = (H', \Sigma', E') \) two hidden specifications over \((V, \Psi, D)\) such that both of them are consistent and lexic, and \(\phi : (H, \Sigma) \rightarrow (H', \Sigma') \) a vertical signature morphism. A relation \(R \subseteq T_\Sigma \times T_{\Sigma'} \) is a \(\phi \)-simulation from \(SP \) to \(SP' \) iff it satisfies:

1. if \(t R_v t', E \equiv t = d, \text{ and } E' \equiv t' = d' \) then \(d = d' \), for all \(t \) in \(T_\Sigma, t' \) in \(T_{\Sigma'} \), \(d \) in \(D \), \(d' \) in \(D' \), and \(v \) in \(V \),

2. if \(t R_h t' \) then \(\sigma(t, d) R \phi(\sigma)(t', d) \), for all \(t \) in \(T_\Sigma, t' \) in \(T_{\Sigma'} \), \(\sigma \) in \(\Sigma \), \(d \) in \(D_w \), and \(h \) in \(H \).

Candidates:

1. behavioural similarity: \(t \sim_{SP,SP'} t' \) iff for all \(c \in T_\Sigma[z]_v, v \in V \)

\[
E \equiv c[t] = d, \quad E' \equiv \phi(c)[t'] = d' \quad \text{implies} \quad d = d'.
\]

2. if \(\Sigma = \Gamma + \Delta \) then we can use the relation \(\sim_{SP,SP'} \) defined by \(t \sim_{SP,SP'} t' \) iff

\[
E \equiv c[t] = d, \quad E' \equiv \phi(c)[t'] = d' \quad \text{implies} \quad d = d'
\]

for all \(c \in T_\Delta[z]_v, v \in V \). The relation \(\sim_{SP,SP'} \) is a simulation (in fact coincides with the behavioural similarity) if it satisfies

\[
t \sim_{SP,SP'} t' \text{ implies } \sigma(t, d) \sim_{SP,SP'} \phi(\sigma)(t', d) \text{ for all } t \in (T_\Sigma)_h, t' \in (T_{\Sigma'})_{\phi(h)},\]

\[
\sigma \in \Gamma, d \in D_w.
\]

3. \(\sim_{SP,SP'} \) when all operations in \(\Delta \) are unary:

\[
t \sim_{SP,SP'} t' \text{ iff } (E \equiv \sigma(t) = d, E \equiv \phi(\sigma)(t') = d' \text{ implies } d = d', \text{ for all } \sigma \in \Delta).
\]
Example: counters 2 (definitions)

mod* COUNTER-1
{
 [Counter1]
 protecting(NAT)
 op init1 : -> Counter1
 bop inc1 : Counter1 -> Counter1
 bop clear : Counter1 -> Counter1
 bop val : Counter1 -> Nat
 var C : Counter1
 eq val(init1) = 0 .
 eq val(clear(C)) = 0 .
 ceq val(inc1(C)) = s(s val(C) quo 2) if (val(C) rem 2) == 1 .
 ceq val(inc1(C)) = s(2 * val(C)) if (val(C) rem 2) == 0 .
}

mod* XCOUNTER-1
{
 protecting(COUNTER-1)
 bop inc2 : Counter1 -> Counter1
 var C : Counter1
 eq val(inc2(C)) = val(inc1(inc1(C))) .
}

If we imagine that COUNTER-1 displays its values a screen, then an external observer will see sequences of the form

0, 1, 2, 5, 4, 9, 6, 13, ..., 0, 1, 2, 5, 4, 9, ...
mod PROOF
{
 protecting(XCOUNTER-1)
 protecting(COUNTER-2)

 op _SMILE_ : Counter2 Counter1 -> Bool

 var C1 : Counter1
 var C2 : Counter2

 ops c1 : -> Counter1
 ops c2 : -> Counter2

 eq init2 SMILE init1 = true.
 eq inc2(C2) SMILE inc2(C1) = (C2 SMILE C1).
 eq clear(C2) SMILE clear(C1) = true.

 -- Lemma 1
 ceq val(inc1(inc1(C1))) = s s val(C1) if (val(C1) rem 2) == 0.

 -- Lemma 2
 -- ceq val(C1) rem 2 = 0 if there is C2 such that C1 SMILE C2.
}
Example: counters 2 (proof score)

-- Prove that C2 SMILE C1 implies inc2(C2) SMILE inc2(C1)

open PROOF
-- hypothesis
eq c2 SMILE c1 = true .
-- conclusion
red inc2(c2) SMILE inc2(c1) . -- it should be true
close

-- The proof of "C2 SMILE C1 implies clear(C2) SMILE clear(C1)" is trivial

-- Prove that C2 SMILE C1 implies val(C2) == val(C1) by struct. induction
-- -- induction basis
open PROOF
red val(init2) == val(init1) . -- it should be true
close
-- -- induction step 1
open PROOF
-- hypothesis
eq c2 SMILE c1 = true . -- not used in the proof
eq val(c2) = val(c1) . -- inductive hypothesis
eq val(c1) rem 2 = 0 . -- by Lemma 2
-- conclusion
red val(inc2(c2)) == val(inc2(c1)) . -- it should be true
red val(clear(c2)) == val(clear(c1)) . -- it should be true
close

It is worth to note that XCOUNTER-1 does not refines (via ϕ) COUNTER-2. For this, it is enough to see that the equation $val(inc2(C)) = s s val(C)$ does not hold in $\phi T_{XCOUNTER-1}$:

%XCOUNTER-1> red val(inc2(t)) == s s val(t) .
-- reduce in % : val(inc2(inc1(init1))) == s (s val(inc1(init1)))
false : Bool
(0.010 sec for parse, 99 rewrites(0.060 sec), 183 match attempts)
Proving refinement using a simulation

1. Define a relation \(R \subseteq T_S \times T_S' \).
2. Prove that \(R \) is a simulation from \(SP \) to \(SP' \).
3. Prove that \(R \) is surjective.

Example: counters 3 (definitions)

We consider a modified version of the module \(\text{COUNTER-1} \) where the attribute \(\text{val} \) displays only the even values:

```plaintext
mod* COUNTER-01 {
  *[Counter1]*
  protecting(NAT)
  op init1 : -> Counter1
  bop inc1 : Counter1 -> Counter1
  bop clear : Counter1 -> Counter1
  bop val : Counter1 -> Nat
  var C : Counter1
  eq val(init1) = 0 .
  eq val(clear(C)) = 0 .
  eq val(inc1(init1)) = 0 .
  eq val(inc1(clear(C))) = 0 .
  eq val(inc1(inc1(C))) = s s val(C) .
}

mod* XCOUNTER-01 {
  protecting(COUNTER-01)
  bop inc2 : Counter1 -> Counter1
  var C : Counter1
  beq inc2(C) = inc1(inc1(C)) .
}
```
Example: counters 3 (proof environment)

mod PROOF {
 -- environment for proving that XCOUNTER-01 refines
 -- COUNTER-2 by simulation

 protecting(XCOUNTER-01 + COUNTER-2)
 op _SMILE_ : Counter2 Counter1 -> Bool
 op #inc1 : Counter1 -> Nat

 vars C1 : Counter1
 vars C2 : Counter2

 eq C2 SMILE C1 = val(C2) == val(C1) .

 eq #inc1(init1) = 0 .
 eq #inc1(inc1(C1)) = s #inc1(C1) .
 eq #inc1(clear(C1)) = 0 .

 op c1 : -> Counter1
 op c2 : -> Counter2
}
Example: counters 3 (proof score 1)

-- Prove that SMILE is a simulation

open PROOF2
-- hypothesis
eq val(c2) = val(c1).
-- conclusion
red inc2(c2) SMILE inc2(c1). -- it should be true
red clear(c2) SMILE clear(c1). -- it should be true
close

-- Prove that SMILE is surjective

-- -- Lemma 1: val(C) = val(inc1(C)) if #inc1(C) rem 2 = 0
-- -- The proof is by natural
-- -- induction on n = #inc1(c1)
open PROOF2
-- basis step
red val(init1) == val(inc1(init1)).
red val(clear(C1)) ==
 val(inc1(clear(C1))).
-- inductive step
-- -- hypothesis
eq val(inc1(c1)) = val(c1).
-- -- conclusion
red val(inc1(inc1(c1))) == val(inc1(inc1(inc1(c1)))).
-- it should be true
close
-- -- end of lemma
Example: counters 3 (proof score 2)

-- Prove that for each term t' of sort Counter1 there is a term t of
-- sort Counter2 such that t SMILE t', by structural induction on t'
---- basis step

open PROOF2
red init2 SMILE init1 . ---- it should be true
red init2 SMILE inc1(init1) . ---- it should be true
close

-- -- inductive step
-- -- -- case 1: \#inc1(c1) rem 2 = 0
open PROOF2
-- hypothesis
eq val(c2) = val(c1) .
-- c2 SMILE c1 == true
eq \#inc1(c1) rem 2 = 0 .
eq val(inc1(c1)) = val(c1) . -- by Lemma 1
-- conclusion
red c2 SMILE inc1(c1) . -- it should be true
close

-- -- case 2: \#inc1(c1) rem 2 = 1
open PROOF2
-- hypothesis
op c1' : -> Counter1 .
eq val(c2) = val(c1) . -- c2 SMILE c1 == true
eq c1 = inc1(c1') .
eq \#inc1(c1') rem 2 = 0 .
eq val(inc1(c1')) = val(c1') . -- by Lemma 1
-- conclusion
red inc2(c2) SMILE inc1(c1) . -- it should be true
close
mod! MUTEX-DATA {
 [A-State B-State CR-State Config]

 **> operators

 ops B-bcs B-ecs B-bncs B-encs : -> B-State
 ops av non-av : -> CR-State
 op ___ : A-State B-State CR-State -> Config

 **> variables

 var A : A-State
 var B : B-State
 var C : CR-State

 **> transitions

}

Example: mutual exclusion problem (data)
Example: mutual exclusion problem (object)

mod* MUTEX-OBJECT
{
 protecting (MUTEX-DATA)

 [State]

 bop A-in_ : State -> A-State
 bop B-in_ : State -> B-State
 bop CR-in_ : State -> CR-State

 bops B-ncs B-pre B-cs B-post : State -> State

 var Q : State

 eq A-in A-ncs(Q) = A-encs .
 eq A-in A-pre(Q) = A-bcs .
 eq A-in A-cs(Q) = A-ecs .
 eq A-in A-post(Q) = A-bncs .
 eq A-in B-ncs(Q) = A-in Q .
 eq A-in B-pre(Q) = A-in Q .
 eq A-in B-cs(Q) = A-in Q .
 eq A-in B-post(Q) = A-in Q .

 eq B-in B-ncs(Q) = B-encs .
 eq B-in B-pre(Q) = B-bcs .
 eq B-in B-cs(Q) = B-ecs .
 eq B-in B-post(Q) = B-bncs .
 eq B-in A-ncs(Q) = B-in Q .
 eq B-in A-pre(Q) = B-in Q .
 eq B-in A-cs(Q) = B-in Q .
 eq B-in A-post(Q) = B-in Q .

 eq CR-in B-ncs(Q) = CR-in Q .
 eq CR-in B-pre(Q) = non-av .
 eq CR-in B-cs(Q) = non-av .
 eq CR-in B-post(Q) = av .
 eq CR-in A-ncs(Q) = CR-in Q .
 eq CR-in A-pre(Q) = non-av .
 eq CR-in A-cs(Q) = non-av .
 eq CR-in A-post(Q) = av .
}
Example: mutual exclusion problem (proof score 1)

-- Theorem 1: MUTEX-OBJECT does not deadlock

-- -- Lemma 1: A can enter its critical section
open MUTEX-OBJECT
-- hypothesis
op q : -> State .
eq A-in q = A-encs . -- A ended its noncritical section
eq B-in q = B-encs . -- B ended its noncritical section
eq CR-in q = av . -- CR is available

-- conclusion
red A-in q B-in q CR-in q =>
 A-in A-pre(q) B-in A-pre(q) CR-in A-pre(q) . -- it should be true
close

-- -- Lemma 2: B can enter its critical section
open MUTEX-OBJECT
-- hypothesis
op q : -> State .
eq A-in q = A-encs . -- A ended its noncritical section
eq B-in q = B-encs . -- B ended its noncritical section
eq CR-in q = av . -- CR is available

-- conclusion
red A-in q B-in q CR-in q =>
 A-in B-pre(q) B-in B-pre(q) CR-in B-pre(q) . -- it should be true
close
Example: mutual exclusion problem (proof score 2)

-- -- Lemma 3: A and B cannot enter their critical sections
-- -- in the same time
open MUTEX-OBJECT
-- hypothesis
op q : -> State .
eq [hyp1] : A-in q = A-encs . -- A ended its noncritical section
eq [hyp2] : B-in q = B-encs . -- B ended its noncritical section
eq [hyp3] : CR-in q = av . -- CR is available

-- conclusion
start A-in q B-in q CR-in q .
apply hyp1 within term .
apply hyp2 within term .
apply hyp3 within term .
-- rule MUTEX-DATA.11 is [a-pre] : A-encs B av => A-bcs B non-av
apply MUTEX-DATA.11 within term . -- it could be applied
-- rule MUTEX-DATA.15 is [b-pre] : A B-encs av => A B-bcs non-av
apply MUTEX-DATA.15 within term . -- it couldn’t be applied
close

open MUTEX-OBJECT
-- hypothesis
op q : -> State .
eq [hyp1] : A-in q = A-encs . -- A ended its noncritical section
eq [hyp2] : B-in q = B-encs . -- B ended its noncritical section
eq [hyp3] : CR-in q = av . -- CR is available

-- conclusion
start A-in q B-in q CR-in q .
apply hyp1 within term .
apply hyp2 within term .
apply hyp3 within term .
apply MUTEX-DATA.15 within term . -- it could be applied
apply MUTEX-DATA.11 within term . -- it couldn’t be applied
close